SLAKE DURABILITY

Changes in rock properties due to processes of chemical and mechanical breakdown (eg. exfoliation, hydration, solution, oxidation, abrasion etc.) can be very important in engineering applications. A good index test of rock degradability is the Slake Durability Index.

Apparatus :-

- 140mm diameter drum with 100mm long 2mm mesh walls.
- trough to contain drum + water
- motor drive (20rpm)

SLAKE DURABILITY APPARATUS

SLAKE DURABILITY

Method

- 1. Sample consisting of 10 spheroidal lumps each approx 50g is placed in the drum and weighed.
- 2. Drum is placed in trough filled with water at 20°C to a level just below drum axis and rotated at 20rpm for 10 minutes.
- 3. Drum is removed and material retained dried at 105°C
- 4. Cycle is repeated and the dried material retained after 2 cycles weighed.

SLAKE DURABILITY = INDEX Weight retained 2 cycles Initial weight

SLAKE DURABILITY CLASSIFICATION

DURABILITY	Cycle 1 (% retained)	Cycle 2. (% retained		
Very High	>99	>98		
High	98-99	95-98		
Medium-High	95-98	85-95		
Medium	85-95	60-85		
Low	60-85	30-60		
Very Low	<60	<30		

LABORATORY TESTING OF INTACT ROCK

Α πα'

Volumetric Strain
For strains of several % of the volume change per unit volume, then the volumetric strain,
$$\Delta V/V$$
 is given by :-
$$\frac{\Delta V}{V} = \varepsilon_{axad} + 2\varepsilon_{bac} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

As from $\varepsilon_{bac} = -V\varepsilon_{axad} = -V\varepsilon_1$
then $\varepsilon_2 = \varepsilon_3 = -V\varepsilon_1$ and
 $\frac{\Delta V}{V} = \varepsilon_1(1-2v)$

BEAM BENDING TEST

- 3 or 4 point loading
- L:D ratio > 4, end unprepared.
- $T_{MR} = 1$ to 10 x Direct Tensile Strength

Fracture Toughness Test - modified to include slit in middle of core.

HOEK TRIAXIAL CELL

		STR	ESS-	STRA	AIN ir	n 3D: ISC	OTROPIC	ELAST	ΙCITY	
	E _{zz}	$=\frac{1}{E}$	$[\sigma_{zz}]$	- <i>v</i> (σ	, _{xx} + 0	$(\boldsymbol{\sigma}_{yy})] \boldsymbol{\varepsilon}_{y}$	$v_{y} = \frac{1}{E} \left[\sigma \right]$	$\nu_{yy} - \nu (\sigma_x)$	σ_{zz})]
	E _{xx}	$=\frac{1}{E}$	$[\sigma_{xx}]$	-v(a	σ _{yy} +	σ_{zz}] γ	$a_{xy} = \frac{1}{E} [2$	(1 + v)] =	$=\frac{1}{G}\sigma_{xy}$	etc
		Whei	re G =	= She	ar Mo	odulus =	$G = \frac{1}{2(1+1)}$	$\frac{E}{+\boldsymbol{\nu})}$		y x
6	xx		1	- v	- <i>v</i>	0	0	0	σ_{xx}	\int
6	<i>yy</i>		- <i>v</i>	1	- <i>v</i>	0	0	0	σ_{yy}	
E	zz	=	- <i>v</i>	- <i>v</i>	1	0	0	0	σ_{zz}	
1	xy	E	0	0	0	2(1 + v)	0	0	σ_{xy}	
1	yz		0	0	0	0	2(1 + v)	0	σ_{yz}	
2	'zx]		0	0	0	0	0	2(1 + v)	σ_{zx}	

NUMERICAL EXAMPLE

A cylindrical specimen of elastic isotropic rock was loaded in a triaxial cell with a confining pressure of $4MN/m^2$ and an axial stress of $33MN/m^2$. Strain gauges attached to the specimen indicated an axial strain of 850microstrains with a lateral (extensile) strain of -20microstrains. Calculate the Elastic Modulus, E, and Poisson's ratio, v. (Imicrostrain = 10^6 and $1MN/m = 10^6$ N/m)

$$\varepsilon_{xx} = \frac{1}{E} \left[\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz}) \right] - 20 \mu S = \frac{1}{E} \left[4 - \nu (33 + 4) \right]$$
$$\varepsilon_{zz} = \frac{1}{E} \left[\sigma_{zz} - \nu (\sigma_{xx} + \sigma_{yy}) \right] = 850 \mu S = \frac{1}{E} \left[33 - \nu (4 + 4) \right]$$
$$E = \frac{4 - 37\nu}{-20} \quad \text{and} \quad E = \frac{33 - 8\nu}{850} \quad \text{Solve for } \underline{\nu = 0.128}$$
Substituting
$$E = \frac{33 - 8\nu}{850} = E = \frac{33 - 8(0.128)}{850} \quad \underline{E} = \frac{37.6\text{GPa}}{850}$$

Description	Porosity (%)	Si (MPa)	ф	Range of Confining Pressure (MPa)	
Berea sandstone	18.2	27.2	27.8	0-200	
Bartlesville sandstone		8.0	37.2	0-203	
Pottsville sandstone	14.0	14.9	45.2	0-68.9	DOCK SHEAD
Repetto siltstone	5.6	34.7	32.1	0-200	NUCH SHEAK
Muddy shale	4.7	38.4	14.4	0-200	
Stockton shale		0.34	22.0	0.8-4.1	STRENGTH
Edmonton bentonitic shale (water content 30°)	44.0	0.3	7.5	0.1-3.1	DIRECTIO
Sioux quartzite		70.6	48.0	0-203	INTERCEPT.
Texas slate; loaded					n i Encer i i
30 degrees to cleavage		26.2	21.0	34.5-276	C and ANCI E
90 degrees to cleavage		70.3	26.9	34.5-276	S: and ANGLE
Georgia marble	0.3	21.2	25.3	5.6-68.9	1
Wolf Camp limestone		23.6	34:8	0-203	OF EDICTION
Indiana limestone	19.4	6.72	42.0	0-9.6	OF FRICTION,
Hasmark dolomite	3.5	22,8	35,5	0.8-5.9	
Chalk	40.0	0	31.5	10-90	ά.
Blaine anhydrite		43,4	29.4	0-203	φ.
Inada biotite granite	0.4	55.2	47.7	0.1 - 98	
Stone Mountain granite	0.2	55.1	51.0	0-68.9	
Nevada Test Site basalt	4.6	66.2	31.0	3.4-34.5	
Schistose gneiss					
90 degrees to schistocity	0.5	46.9	28.0	0-69	
30 degrees to schistocity	1.9	14.8	27.6	0-69	

	<i>q_#</i>			
Description ^a	MPa	psi	$q_a/T_0^{\rm b}$	
Berea sandstone	73.8	10,700	63.0	
Navajo sandstone	214.0	31,030	26.3	
Tensleep sandstone	72.4	10,500		
Hackensack siltstone	122.7	17,800	41.5	
Monticello Dam s.s. (greywacke)	79.3	11,500		
Solenhofen limestone	245.0	35,500	61.3	
Bedford limestone	51.0	7,400	32.3	
Tavernalle limestone	97.9	14,200	25.0	
Oneota dolomite	86.9	12,600	19.7	
Lockport dolomite	90.3	13,100	29.8	UNCONFINED
Flaming Gorge shale	35.2	5,100	167.6	UNCONFINED
Micaceous shale	75.2	10,900	36.3	COMPRESSIVE
Dworshak Dam gneiss				COMPRESSIVE
45° to foliation	162.0	23,500	23.5	AND TENCH E
Quartz mica schist ⊥ schistocity	55.2	8,000	100.4	AND IENSILE
Baraboo quartzite	320.0	46,400	29.1	OTDENCTH
Taconic marble	62.0	8,990	53.0	SIKENGIH
Cherokee marble	66.9	9,700	37.4	
Nevada Test Site granite	141.1	20,500	12.1	
Pikes Peak granite	226.0	32,800	19.0	
Cedar City tonalite	101.5	14,700	15.9	
Palisades diabase	241.0	34,950	21.1	
Nevada Test Site basalt	148.0	21,500	11.3	
John Day basalt	355.0	51,500	24.5	
Nevada Test Site tuff	11.3	1,650	10.0	

