
Force-Balance and Mohr's Equations 
(Mohr Stress) 

 
 

The Force-Balance Analysis 
 
In high school physics we were taught that pressure is defined as force per unit area.   Stress may have the same 
definition.  The distinction between pressure and stress in  geology is based on the nature of the material on which 
the force is acting.  The distinction is made depending on whether the material in question has a shear strength.  
Materials such as rock are said to have a shear strength because they maintain their shape when placed unsupported 
on a table.  If we are dealing with a rock that has a shear strength (fluids such as water and gases do not), then we say 
that it exerts a stress on its surroundings.  Materials which have a shear strength can exert different stresses in 
different directions.  In contrast, water, without a shear strength would proceed to run over the table top seeking the 
lowest spot.  If we wish to describe the force per unit area that a liquid or gas is exerting on its container, we use the 
term pressure.  Water in the pores in rocks exerts a pressure on the grains surrounding the pore.   
 
The most useful equations for teaching the concept of stress are the equations for normal (σn) and shear (τ) stress in 
terms of principal stresses (σ1,σ3).   The derivation of these equations is based on a force-balance problem which 
assumes that a body subject to forces is in equilibrium which means that all forces in any direction add to zero.   
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(Fig. 1) 

 
Consider the forces acting parallel to the front face of the triangular solid shown in Figure 1.  These forces are acting 
in a plane so that this force-balance problem is two dimensional.  If the area of the hypotenuse face is unity (i.e. 1), 
then the area of the left face is unity times sin θ whereas the area of the bottom face is unity times cos θ.  Forces 
acting on the three faces are stresses multiplied by the area of the face [Force =  (force/area) × (area)].  Summing the 
forces in the horizontal and vertical directions (the forces add to zero in both directions), we obtain 

 
 Σ Fh   =  0  =  Fx - S sinθ - N cosθ   (1a) 
 
 Σ Fv  =  0  =   Fy - N sinθ + S cosθ (1b) 
 
Rewriting the force terms using components of stress, we obtain the normal and shear stresses acting on a 

plane an angle of θ to σ1 in terms of the principal stresses.   
 
 σ1 cos θ  −  σn cosθ  −  τ sinθ   =  0 (2a) 
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 σ3 sin θ  −  σn sinθ  +  τ cosθ   =  0 (2b) 
 

In many geological applications the plane of interest is a fault plane.  Now we can solve these two equations for σn 
and τ 
 
  σn   =  σ3 cos2θ  +  σ1  sin2θ  (3a) 
 
 τ   =   (σ1 -  σ3) cosθ sinθ     (3b) 
 
 Remember that   
 
 sin2θ  =  2 sinθ cosθ    (4) 
 
and also     
 cos2θ   =  1/2(1  +  cos2θ )   and  sin2θ   =  1/2(1  -  cos2θ ) (5) 
 
We derive 

 σn  =   1/2(σ1  +  σ3)  +  1/2(σ1  -  σ3)cos2θ             (6a)             
 
and  

 τ  =    1/2(σ1  -  σ3)sin2θ . (6b) 
 

Note that in these equations θ is the angle between σ1 and the normal to the fault plane.  This convention leads to a 
positive sign in the middle of equation  6.  The sign convention is that θ is the angle between the normal to the fault 
plane and σ1.   

 
The general force-balance problem is shown in figure 2 where the back and side faces of the unit triangle are subject 
to both normal and shear stresses.  In other words the coordinate system x-y is not parallel to the principal stress 
directions.  The general case is given to illustrate a property of stress called invariance with respect to coordinate 
system.  In two dimensions we define stress as a force per unit of line length, in contrast to the three dimensional 
situation where stress is a force per unit area (Fig. 1).  Consider a coordinate system Oxy with an arbitrary line AB 
cutting the x and y axes such that the normal to the line AB makes an angle θ with the x-axis.  This gives a right 
triangle AOB with sides OA (parallel to Ox) and OB (parallel to Oy) and a hypotenuse AB.    Across the line AB a 
stress vector p can be applied making an angle θ with the x-axis.  Remember that p = δf/δA when δA ⇒ 0, so a 
stress vector can represent stress at a point.  Otherwise stress is defined on a line (2-D) or a surface (3-D).  The stress 
vector p can be resolved into components parallel to the x and y axes:  p = px + py.  Even though P is called a vector 
it still has units of stress (force/length in two dimensions).  Because the triangle ABO is in equilibrium the sum of the 
force-vectors on all sides must balance.  In 2-D stress multiplied by line length will give a force vector.  So 
  

 pxAB  =  σxOB  +  τyxOA.  (8) 
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(Fig. 2) 
 
                                                 
 
If length a = AB, then a×cosθ = OB and a×sinθ = OA.  If we divide by length a, then 
  
 px  =  σx cosθ  +  τyx sinθ.           (9a)                                           
 
Likewise  
 
 py  =    σy sinθ  +  τxy cosθ                           (9b)                          
 
Now consider a normal stress σn and shear stress τ  across AB in terms of the components of the stress vector 
 
 σn  =  px cosθ  +  py sinθ                     (9c)                                   
 
The equality holds for τ 
  
 τ  =  py cosθ  -  px sinθ.                                             (9d) 
 
Substituting for px and py and remembering that  sin2θ  =  2 sinθ cosθ   and also     
cos 2θ  =  cos2θ  -  sin2θ 
 

 σn  =  σx cos2θ +  2τxy sinθ cosθ  +  σy sin2θ (10a) 
 
and 
  
 τ  =  1/2(σy  -  σx) sin2θ  +  τxy cos2θ.                            (10b) 
 
These are the general equations for a stress system in which the orientation of the principal stresses are unknown.  
The following exercise illustrates the case for the principal stresses being parallel to the coordinate axes. 
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(Fig. 3) 

 
Now we consider the effect of rotating the coordinate system on the values of stress (Fig. 3).  To accomplish 

this coordinate rotation let σn and τ  be σx' and  τ x'y' where Ox'y' is rotated θ from Oxy.  From a previous equation 
we have 
  
 σx'  =  σx cos2θ  +  2τxy sinθ cosθ  +  σy sin2θ (11a) 
 
Now we must find σy' in the new coordinate system.  This is accomplished by replacing θ by  θ  +  1/2π and we get 
 
 σy'  =  σx sin2θ  -  2τ xy sinθ cosθ  +  σy cos2θ  (11b) 
 
If we add σx' and σy' and remember that  sin2θ  +  cos2θ  =  1, we get 
  

σx'  +  σy'  =  σx  +  σy.      (12)                                            
  
This shows that the sum of the normal stresses is invariant or unchanged by rotation of the coordinate system.  
Likewise 
 
 τ x'y'  =  0.5(σy  -  σx) sin2θ  +  τ xy cos2θ.               (13)           
 
Principal stresses are found in planes containing no shear stress.  If in these planes, τx"y"  =  0, then from the 
previous equation                   
                                      
    2τxy 
                  tan2Θ  =             ____ (14) 
                                                          σx - σy                                                       
 
where Θ is the one angle between the coordinate system Ox"y"  and Oxy where the shear stresses vanish along the 
directions Ox" and Oy".  In this coordinate system the only stresses are the normal stresses σx" and σy". This 
coordinate system contains the principal stress axes and the components, σx" and σy" are known as the principal 
stresses. 
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(Fig. 4) 

Let us now call these principal stresses σ1 and σ2 (Fig. 4) and then we shall choose the coordinate system 
such that the x and y axes are in the direction of the principal stresses, σ1 and σ2.  Now the normal σn and shear τ 
stresses across a line whose normal is inclined at θ to σ1 is 
  
 σn  =  σ1.cos2θ   +   σ2.sin2θ              (15)                                    
 
Again remember that  
  
 cos2θ   =  1/2(1  +  cos2θ )   and  sin2θ   =  1/2(1  -  cos2θ )   
 
we can rearrange the equation for the normal stress 
  
 σn  =   1/2(σ1  +  σ2)  +  1/2(σ1  -  σ2)cos2θ     (repeat of 6a)                     
 
and shear stress 
  
 τ  =    1/2(σ1  -  σ2)sin2θ .   (repeat of 6b)                                            
 
From this last equation we see that shear stress is greatest when θ  =  π/4 and 3π/4. 

Using this same coordinate system where the axes are parallel to the principal stresses σ1 and σ2, we can 
look at the stress vectors px and py.  They become 
 
 px  =  σ1.cosθ      and      py  =  σ2.sin θ.                (16) 
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(Fig. 5) 

 
Substituting into the equation  sin2θ  +  cos2θ  =  1,  we can generate the equation for an ellipse where the px and py 
are on the ellipse called the stress ellipse. 
 
 px2              py2 
 ___   +        ___   =     1 
 σ12              σ22                                                (17)                   
The semi axes of the ellipse are σ1 and σ2. 

The Mohr's circle is a graphical method of representing the state of stress of a rock in two dimensions (Fig. 
5).  The equations used for the Mohr's circle representation are those derived above for the coordinate system with 
axes parallel to the principal stresses.  The Mohr's circle may be used to derive the normal σn and shear τ  stresses on 
any plane whose normal is oriented at θ from σ1.   The coordinate system for the Mohr's circle representation is σn 
along the horizontal axes with increasing compression to the right and τ  along the vertical axes.  Critical points 
along the σn-axes are OP = σ1, OQ = σ2, and   
C  =  1/2(σ1  +  σ2).  The angle measured as PCA counter clockwise from OP is 2θ.  Now we have 
  
 σn  = OB  =  OC + CB   =  1/2(σ1 +  σ2)  +  1/2(σ1 -  σ2)cos2θ   (18a) 
 
and 
  

τ  =  AB   =  1/2(σ1  -  σ2)sin2θ.   (18b) 
 
 


