Unit 6

Measurement 3

Proportion

JEM/ENG

Mesleki Yabancı Dil

(Professional English)

Dr. Veysel Işık Professor

Ankara Üviversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü

Relative Size

Look at the picture
the number or amount of group or part of something when nnmmined to the whole

Sizes are relative.

Most objects are big in proportion to the size of an atom but small in proportion to the size of the sun.

+ (o) nucleus $+\rightarrow$ of an atom

Make sentences like the following:
Example:
A camel is big in proportion to the size of an amoeba but small in proportion to the size of a mountain.

Is a mountain large or small?
Compared with the size of the Sun, a mountain is relatively small.

Look at this bar-graph

Now compare the heights of the mountains, making sentences from the table below:

Example:

Everest is nearly nine times as high as Ben Nevis.
Aconcagua is considerably higher than Mont Blane.
nearly
approximately
much
considerably
slightly
the same high as twice as high as x times as high as \qquad
higher lower
than

Look at this table:

Average size of rock fragments over 256 mm boulder

150 mm cobble
30 mm pebble
3 mm granule
1.5 mm sand
0.5 mm silt
under $1 / 256 \mathrm{~mm}$ clay

Look at this example:

Cobble is approximately five times as big as pebble.
Therefore, the ratio of cobble to pebble is approximately $5: 1$ (five to one).

Now compare the following:
(a) granule : sand
(b) cobble : sand
(c) granule : silt
(d) Pebble : granule

Look at this table

Abundance of the most common elements by mass		
Crust element $\%$	Sea water element \%	Whole Earth element \%
Oxygen 49,4	Oxygen 91	Iron $40-50$
Silicon 25,8	Hydrogen 5,7	Oxygen 22-28
Aluminium 7,5	Chlorine 2	Silicon 11-15
Iron 4,7	Sodium	Magnesium 9
Calcium 3,4	Magnesium 0,1	Nickel 3-6
Sodium 2,6	Sulphur 0,08	Calcium 1-2
Potassium 2,4	Calcium 0,04	Aluminium 1-2
Magnesium 2	Potassium 0,04	
Hydrogen 0,9	Bromine 0,01	
Titanium 0,5	Carbon 0,003	

Now answer these questions:
(a) Which elements constitute approximately 80% of the Earth's crust?
(b) What percentage of sea water do oxygen, hydrogen, and chlorine constitute?
(c) Express the amounts of oxygen in the Earth's crust, in the sea water, and the whole Earth as a ratio.
(d) Which element has a ratio 90:20:1 in the whole Earth, in the crust, and in the sea water?
(e) Which element has an approximate ratio of 5:2 in the crust and in the sea water?
(f) Which element has a ratio of 85:1 in the crust, and in the sea water?
(g) In sea water compare the amount of chlorine with (i) oxygen (ii) bromine.
(h) Compare the amount of iron in the whole Earth with the amount of iron in the crust.

Direct and inverse proportion

Look and read

great volume/low pressure

small volume/high pressure

Pressure is inversely proportional to volume; i.e. the greater the volume, the lower the pressure.
Conversely, the smaller the volume, the higher the pressure.

Look at this example
Valley - wide /narrow speed of water - slow/fast

The wider the valley, the slower the speed of the water. Conversely, the narrower the valley, the faster the speed of water.

Therefore, the speed of the water depends on the width of valley. i.e. the speed of the water is inversely proportional to the width of the valley.

Note: the opposite of inversely proportional is directly proportional.

Look at this example

number of tributaries - great / small - amount of water - great / small

Number of tributaries - great /small
amount of water - great /small
The greater the number of tributaries, the greater the amount of water. Conversely, the smaller the number of tributaries, the smaller amount of water.

Therefore, the amount of water depends on the number of tributaries. i.e. the amount of the water is directly proportional to the number of the tributaries.

Now look at these diagrams and write similar sentences:

speed of river - fast / slow - size of particle which can be transported - large / small

Now look at these diagrams and write similar sentences:

The steeper the gradient, the faster the stream.
Conversely, the gentler the gradient, the slower the stream.

Therefore, the stream depends on the gradient. i.e. stream is directly proportional to the gradient.

amount of water in a river - great/small - weight of debris which can be transported - large/small

Look at this example:

Two rivers: one river transports cobble one river transports granule

Which river can move cobble and which can move granule?

River (i) has a steeper gradient. The steeper the gradient, the faster the speed of water. The speed in turn determines the size of particle which can be transported. Consequently, river (i) can transport cobble.

Now write similar sentences using this information:

Two rivers: which can transport boulder and why?

Two rivers: which can transport all sizes of particles and why?

Two rivers: which can transport all sizes of particles and why?

Look at this example and make similar sentences from the table below:

Example:

Syenite (has/contains) a small amount of potassium oxide.

Oxide	Gabbro	Diorite	Syenite	Granite
Silicon oxide (SiO_{2})	48.36\%	51.86\%	55.41\%	72.08\%
Aluminium oxide ($\mathrm{Al}_{2} \mathrm{O}_{3}$)	16.84\%	16.40\%.	17.12\%	13.86\%
Iron oxides	10.47%	9.70% 。	5.02\%	2.53\%
Magnesium oxide (MgO)	8.06\%	6.12\%	2.02\%	0.52\%
Calcium oxide (CaO)	11.07%	8.40\%	4.06\%	1.33\%
Sodium oxide ($\mathrm{Na}_{2} \mathrm{O}$)	2.26\%	$3 \cdot 36 \%$	3.92\%	3.08\%
Potassium oxide ($\mathrm{K}_{2} \mathrm{O}$)	0-56\%	1.33\%	6.53%	5.46\%
Others	2.38\%	2.83% 。	1.92\%	$1 \cdot 14 \%$

Look at this example and make similar sentences from the table below:
granite-sodium oxide
gabbro-potassium oxide
syenite-silicon oxide
diorite-iron oxides
granite-silicon oxide

Oxide	Gabbro	Diorite	Syenite	Granite
Silicon oxide $\left(\mathrm{SiO}_{2}\right)$	48.36%	$51 \cdot 86 \%$	55.41%	72.08%
Aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$	16.84%	$16 \cdot 40 \%$	17.12%	13.86%
Iron oxides	10.47%	9.70%	5.02%	2.53%
Magnesium oxide (MgO)	8.06%	$6 \cdot 12 \%$	2.02%	0.52%
Calcium oxide (CaO)	11.07%	8.40%	4.06%	1.33%
Sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$	2.26%	3.36%	3.92%	3.08%
Potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$	0.56%	1.33%	6.53%	5.46%
Others	2.38%	2.83%	1.92%	1.14%

Look at these analyses of some rocks. Name the rock in each case. Example:
Rock A contains approximately 60% silicon oxide, approximately 3.5% sodium oxide and 5% iron oxides.
Is this rock diorite?
No, because the percentage of silicon oxide is too high and there is an insufficient amount of iron oxides.

Oxide	Gabbro	Diorite	Syenite	Granite
Silicon oxide $\left(\mathrm{SiO}_{2}\right)$	48.36%	51.86%	$55 \cdot 41 \%$	72.08%
Aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$	16.84%	$16 \cdot 40 \%$	17.12%	13.86%
Iron oxides	10.47%	9.70%	5.02%	2.53%
Magnesium oxide (MgO)	8.06%	6.12%	2.02%	0.52%
Calcium oxide (CaO)	11.07%	8.40%	4.06%	1.33%
Sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$	2.26%	3.36%	3.92%	3.08%
Potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$	0.56%	1.33%	6.53%	5.46%
Others	2.38%	2.83%	1.92%	1.14%

